Skip to main content

Technology and Tooling

Containerisation w...

Examples [docker]

Reproducibility and Granularity
D. M. Eyers, S. L. R. Stevens, A. Turner, C. Koch and J. Cohen. "Reproducible computational environments using containers: Introduction to Docker". Version 2020.09a (4a93bd67aa), September 2020. Carpentries Incubator.

D. M. Eyers, S. L. R. Stevens, A. Turner, C. Koch and J. Cohen. "Reproducible computational environments using containers: Introduction to Docker". Version 2020.09a (4a93bd67aa), September 2020. Carpentries Incubator.

Creative Commons License

Reproducibility and Granularity

Although this workshop is titled "Reproducible computational environments using containers", so far we have mostly covered the mechanics of using Docker with only passing reference to the reproducibility aspects. In this section, we discuss these aspects in more detail.

Work in progress

Note that reproducibility aspects of software and containers are an active area of research, discussion and development so are subject to many changes. We will present some ideas and approaches here but best practices will likely evolve in the near future.

Reproducibility

By reproducibility here we mean the ability of someone else (or your future self) being able to reproduce what you did computationally at a particular time (be this in research, analysis or something else) as closely as possible even if they do not have access to exactly the same hardware resources that you had when you did the original work.
Some examples of why containers are an attractive technology to help with reproducibility include:
  • The same computational work can be run across multiple different technologies seamlessly (e.g. Windows, macOS, Linux).
  • You can save the exact process that you used for your computational work (rather than relying on potentially incomplete notes).
  • You can save the exact versions of software and their dependencies in the container image.
  • You can access legacy versions of software and underlying dependencies which may not be generally available any more.
  • Depending on their size, you can also potentially store a copy of key data within the container image.
  • You can archive and share the container image as well as associating a persistent identifier with a container image to allow other researchers to reproduce and build on your work.

Sharing images

As we have already seen, the Docker Hub provides a platform for sharing container images publicly. Once you have uploaded a container image, you can point people to its public location and they can download and build upon it.
This is fine for working collaboratively with container images on a day-to-day basis but the Docker Hub is not a good option for long time archive of container images in support of research and publications as:
  • free accounts have a limit on how long a container image will be hosted if it is not updated
  • it does not support adding persistent identifiers to container images
  • it is easy to overwrite tagged container images with newer versions by mistake.

Archiving and persistently identifying container images using Zenodo

When you publish your work or make it publicly available in some way it is good practice to make container images that you used for computational work available in an immutable, persistent way and to have an identifier that allows people to cite and give you credit for the work you have done. Zenodo is one service that provides this functionality.
Zenodo supports the upload of tar archives and we can capture our Docker container images as tar archives using the docker image save command. For example, to export the container image we created earlier in this lesson:
docker image save alice/alpine-python:v1 -o alpine-python.tar
These tar container images can become quite large and Zenodo supports uploads up to 50GB so you may need to compress your archive to make it fit on Zenodo using a tool such as gzip (or zip):
gzip alpine-python.tar
Once you have your archive, you can deposit it on Zenodo and this will:
  • Create a long-term archive snapshot of your Docker container image which people (including your future self) can download and reuse or reproduce your work.
  • Create a persistent DOI (Digital Object Identifier) that you can cite in any publications or outputs to enable reproducibility and recognition of your work.
In addition to the archive file itself, the deposit process will ask you to provide some basic metadata to classify the container image and the associated work.
Note that Zenodo is not the only option for archiving and generating persistent DOIs for container images. There are other services out there -- for example, some organizations may provide their own, equivalent, service.

Reproducibility good practice

  • Make use of container images to capture the computational environment required for your work.
  • Decide on the appropriate granularity for the container images you will use for your computational work -- this will be different for each project/area. Take note of accepted practice from contemporary work in the same area. What are the right building blocks for individual container images in your work?
  • Document what you have done and why -- this can be put in comments in the Dockerfile and the use of the container image described in associated documentation and/or publications. Make sure that references are made in both directions so that the container image and the documentation are appropriately linked.
  • When you publish work (in whatever way) use an archiving and DOI service such as Zenodo to make sure your container image is captured as it was used for the work and that is obtains a persistent DOI to allow it to be cited and referenced properly.

Container Granularity

As mentioned above, one of the decisions you may need to make when containerising your research workflows is what level of granularity you wish to employ. The two extremes of this decision could be characterized as:
  • Create a single container image with all the tools you require for your research or analysis workflow
  • Create many container images each running a single command (or step) of the workflow and use them together
Of course, many real applications will sit somewhere between these two extremes.

Positives and negatives

What are the advantages and disadvantages of the two approaches to container granularity for research workflows described above? Think about this and write a few bullet points for advantages and disadvantages for each approach in the course Etherpad.

Key points

  • Container images allow us to encapsulate the computation (and data) we have used in our research.
  • Using a service such as Docker Hub allows us to easily share computational work we have done.
  • Using container images along with a DOI service such as Zenodo allows us to capture our work and enables reproducibility.